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The ground state of the spin-one-half acoustic phonon system is studied in the 
limit B ~ 1. The technique is to combine the Brillouin-Wigner variational per- 
turbation theory with a source canonical transformation. With the B = 0 source 
transform the energy is calculated as a function of coupling constant  through 
terms of order B 2. To this order there is no phase transition. The theory gives 
the crossover from perturbation theory to an improved classical theory with 
quan tum fluctuations. With a source transform with a nonzero inverse length/~ 
the energy estimate is further improved to next order in the coupling constant  
and for larger values of B. The soft, infinite-order transition of the modified 
source theory is removed in the limit B ,~ 1. 

KEY W O R D S :  Spin phonon transition; Spin phonon ground state. 

1. I N T R O D U C T I O N  

I continue (1~ the study of the spin phonon system with unperturbed 
splitting B, coupling constant ~, and upper phonon cutoff unity. My goal is 
the systematic study of the B ,~ 1 limit. The variational calculations of 
part  I showed that there are two regions of ~ where there are changes in 
behavior. The variational extension of the modified source theory gave a 
continuous crossover to a classical energy near ~ = 1/2. This occurs with a 
parity eigenfunction, nonzero overlap Z, and a finite inverse length fl for 
the correlation functions. However, in the region 1/2 < ~ < 1, when B ,~ 1, 
we have Z = (fie) c~/1-c' and both Z and fl are very small. Still at ~ ,-~ 1 there 
is a weak, infinite-order transition superposed on the smooth classical 
behavior. Another, symmetry-breaking, theory also locates the crossover to 
classical behavior at a ,-~ 1/2. But it gives a second-order phase transition 
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with long-range correlation functions for all e > 1/2 and classical behavior 
with quantum fluctuations. Nothing unusual happens near ~ 1. If one 
puts an infrared cutoff ko ~ 1, both theories give the crossover to classical 
behavior at e ~ 1/2, and have everywhere continuous energies and finite 
range (which, however, depends on ko). 

These calculations illuminate the deficiencies of the simple modified 
source and classical theories. Here I try a different approach that focuses 
specifically on B ~ 1. 

I examine the simplest approach in Sections 2-4. It features a source 
transformation with fo(k) = I (~ /T~)  1/2 D/k 3/2. The transformed Hamiltonian 
has the constant -c~/2 and a spin-dependent term that is proportional to 
B. The diagonal part, proportional to B, is zero because the overlap is zero. 
The Hamiltonian is adapted to a perturbation treatment for B ~  1. 
However, simple Rayleigh-Schr6dinger perturbation theory is not 
appropriate. Instead, Brillouin-Wigner theory, which incidentally yields an 
upper bound, provides an effective control of the infrared behavior. The 
analysis can be carried out through terms of order B 2. In fact, for a ~ 1 one 
finds the additional term -B/2,  which is present in ordinary perturbation 
theory as applied to the original Hamiltonian. At ~ = 1/2 there is a smooth 
crossover to the classical theory with additional quantum fluctuations. The 
width of the crossover depends logarithmically on B. The analysis uses 
explicit parity eigenfunctions and indicates that there is no transition at all 
near cr = 1, to order B 2. 

In Section 5, I prepare the Hamiltonian with a modified source trans- 
formation 

v 1 
f ( k ) 2 \ rt ] x//-s k + fl 

and then apply the Brillouin-Wigner (BW) analysis. If one uses the fl = BZ 
of the standard modified source theory, one starts with a diagonal part that 
has the phase diagram of that theory and with an off-diagonal part that is 
again proportional to B. The BW improvement now supplies the smooth 
crossover to classical behavior near c~ = 1/2 that is missing in the modified 
source theory. It also yields quantum fluctuation corrections to the classical 
theory. On the other hand, the weak, infinite-order transition near c~ = 1 
remains. This theory is also valid for larger values of B in the region 
~ ~ B/2. 

The analysis can be extended by leaving fl free for variation at the end 
of the BW procedure. If B ~ I ,  one finds that f l ~ l  can be chosen to 
be nonzero and to lower the energy. This wipes out the infinite-order 
transition of the modified source theory. The extra terms in the energy are 
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very small [ ~ ( B 2 / e ) e x p ( - 2 a 2 / B 2 ) ] ,  so that there is no conflict with the 
results of Section 2, which holds to order B 2. 

Together with the results of part II which yield a first-order transition 
in B ~> 1 we have a partial understanding of the phase diagram. The region 
B ~  1 is at present only treated by the variational approximations of I. 
There is still no convincing theory of this region. 

2. BRILLOUIN-WIGNER TREATMENT 

Let us start by transforming the Hamiltonian with 

Jo(k)  = -~ k3/2 

Then 

H r =  UHU -~ =H o+ V - ~  ( l - k 0 )  

B( ) 
V = - ~  a z c o s 2 f f  opdk+ays in2 f fopdk  

When there is an infrared cutoff the overlap is 

(1) 

(2) 

(3) 

This form of the Hamiltonian has the perturbation V strictly proportional 
to B and is the natural starting point when B ~  1. The unitary operator 
commutes with the parity operator. We will use wave functions that 
involve operators that commute with parity operating on a noninteracting 
ground state ~bo(o~). Thus, we will have a ground state that is always an 
eigenfunction of parity. It turns out that we do not need the infrared cutoff 
and can set ko = 0 from the start. 

I will show that as e starts out from zero, the energy starts as 
- ~ / 2 -  B (~ +~)/2 as in the source theory. But the transition region is near 

= 1/2 (rather than c~ = 1) as for the variational calculation of part I. For  
> i/2 one approaches the result of the classical theory - c(2 - B2/8c~. The 

theory includes quantum fluctuations and is everywhere superior to both. 
The energy and all its derivatives with respect to e are continuous functions 
of ~. 
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My aim is to calculate the energy accurately through terms of order 
B 2. (From this point on I leave off the constant -~ /2 ,  which can be 
restored at the end.) The energy will be calculated by the lowest order 
Brillouin-Wigner perturbation theory. If H r  = H0 + V, the energy is 

E<~ -W(E) (5) 

where 

1 
W(E) = (050[ VHo_E V 105o) (6) 

Here 05o is the noninteracting ground state, and it is assumed that 
(050] VI05o) = 0  as in the present situation. The presence of E in the 
propagator 1 / ( H 0 - E )  is essential, and one would lose everything with the 
Rayleigh-Schr6dinger form. 

The variational basis of the BW theory is that the true energy 

(051 n o +  Z 105) 
E~< (7) 

(05105) 

for any trial function 05. Choose the unnormalized 

0 5 = (  1 - 2 ---'l----1Ho - E V) 05~ (8) 

where/l and E are variational parameters. There is no problem in taking E 
to be the true energy. Then for 2 -  1 a short calculation gives the above 
result. For 2 ~ 1 we have 

E~< (2 2 - 22) W(E) (9) 

where the minimization with respect to 2 gives 

2 OW 2/ ESW~ [w+ (lo) 

However, we do not need this improvement in the calculation through 
terms of order B z. In all of these arguments one notes that expressions with 
an odd number V operators also do not contribute. 

To have an explicit form, use the parametrization 

1 f0 ~ H o +  iEi = dyeY% YH~ e=lE] (11) 
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We have the integrals 

( [ e x p ( i 2 f f p d k ) ] ( k o [ e x p ( - y H o ) [ I e x p ( i 2 f f p d k ) ] ( 9 o )  

= e x p { - 2 f f 2 [ 1 - e x p ( - y k ) ] d k }  
(12) 

( [ e x p ( i 2 f f p d k ] ( % l e x p ( - y H o ) [ [ e x p ( - i 2 f f p d k ) ] q ~ o )  

The second integral vanishes as the infrared cutoff goes to zero. This is 
the usual zero overlap with our f ( k ) = f 0 ( k ) .  

Hence the expression for the energy is 

IEI >1 dy e- Y~e - 2~'J~y) (13) 

Here 

fo ~ 1 -  e k f~ dk J(y) = dk k = T (1 - e -s~) (14) 

J(y) can be expressed in terms of the exponential integral 

J(y) = In y + 7 + El(y), 7 = 0.5772... 

It has the limiting behavior 

y2 
J (y )~y - - -~ -  as y--*O 

(15) 

c--Y 
- , l n  y + v + - -  as y --. oo (16) 

Y 

3. A N A L Y S I S  OF  I(b]e) 
Let 

b = 2 ~ -  1 

I(ble)= dye-Y~e (l+b)Jly) 
(17) 
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We are particularly interested in the behavior as e--+ 0. There is an upper 
bound that arises because 

J(y) >~ ln(1 + y) (18) 

The leading terms are the same for y --* 0 and y -+ oo but differ by the Euler 
constant ~, as y < co. The bound is 

I(b I e) ~< Io(ble) (19) 

Io(b l~)=f?  dye Y~(l+y)-( l+b)  

= e%bF(-- b[e) (20) 

Here F is the incomplete gamma function. (2) The expansion in e for all 
noninteger b is 

I~ ebF(-b)+-b -~ 1 - b  2(2-b~) + ' '  (2t) 

If b > 1 (e > 1), the leading terms are 

1 ~ 
I0(bl ~) ~ - t  b ( 1 -  b) (22) 

If b < 1 (~ < 1), the noninteger power of e is important 

Io(b [ ~) --+ ~ + ebF( -- b) + ... (23) 

In addition, for b < 0 (~ < 1/2), the ~b term dominates the constant 1/b. The 
F function is analytic in b in the vicinity of b = 0, but there is a confluence 
of eb and the constant term, leading to logarithmic terms in ~. We have 

\z/ln2 '~ ) F(bl e) = - 7  - I n  e + e - b l---w- + Y In e § C 2 (24) 

Here I have used 

1 
v ( - b )  = - - ~  - ~ - b e 2  

T~2 ~)2 
c2=55+ T 

(25) 



Ground State of a Spin-Phonon System. III 443 

There is the same type of behavior at all integer b. At b = 1 

Io(1 [e)=e~{1 + e l n  e+  ( ~ -  1) ~+ .- .)  (26) 

I now turn to the analysis of I(ble). The results are similar to those for 
Io(ble). When b > 1 we only need 

/ (b i t )  --* Ko(b) - eKe(b) + ... (27) 

We have two sets of moments 

K,(b) = .I~ dy y"e =(' +b)J(y) 
- u  

(28) 
L,(b) = f ?  dy y"e-Ye -(1 +b)J(y) 

The K n only exist for n < b. Integrating by parts, we have the relation 

b + l  
K,(b) = ~ L,(b) (29) 

For any given b > 1, terms in In e appear for n > b, but will not be needed 
in this analysis. 

To handle the case of b < 1, note the functional equation (obtained by 
integration by parts 

~ e - b  I ( b l ~ ) = - ( b + l ) I ( b l e + l )  (30) 

Near e = 0 

(-1)"L. (31) I (b l e+  I ) = E  n! 

For noninteger b we have the solution 

I(b [ e )=  C(b) eb--~ b + 1 ( -  1)" n-b  n~  ~"L~ (32) 

The constant C(b) is obtained by equating the two different expressions for 
Z(bl 1), 

1 l + b ( - 1 ) n L ~ ( b  ) 
C ( b ) = - ~ L o +  ~ 1 - b  n! (33) 

n=~0 
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At b = 0 (c~ = 1/2), dropping terms that vanish as ~ ~ 0, 

1 ( - 1 )  ~ 
I (0[e)=  - e - r l n e -  ~ n! 

n~0 F/ 
- ~ L n ( 0 )  (34) 

Near b = 0, keeping only terms that become infinite as e-~ 0, 

I ( b l e ) = - e  r l n ~ - b  e - ~ + L ~ ( O ) - ~  ( - 1 ) n L  0) l n e + e  ~ln2e 

(35) 
At b = 1 (~ = 1) the solution is 

I(1 l e) = 2e -7 + e-2~e in e + O(5) (36) 

The expressions involve the quantities Ln(b). Certain special values can be 
obtained exactly. Using the expression for J(y) in terms of the exponential 
integral El(y) and integrating by parts, we find 

e - ( 1  +n)y 
L.(n) = - -  (37) 

l + n  

Since dJ/dy >~ 0, we have (dL,/db)(b) < 0 with Ln( - 1) = n!. 
In particular, Lo(b) dominates for b > 1 as e --* 0 and is important for 

all b. It is a smooth decreasing function starting at L 0 ( - 1 ) =  1 with 
Lo(0) = e -y = 0.5614. For large b there is the asymptotic expansion 

Lo(b) 1 [ 1 1 T - ~  1 2 (1+b)  ~ ""  08)  

There is an elementary lower bound that follows from J(y)<<. y. It is 

Lo <~ 1/(b + 2) (39) 

There is a stronger lower bound that follows from Jensen's inequality with 
a weight function w(t) = te Y'. The optimum t is 

t = 7 + (1 + ~2)1/2 (40) 

L ~  2 ~ l n ( l + t )  I t  (41) 

The value at ~ = 1/2 (b = 0) is 0.560, close to the exact 0.5614. 
There is an upper bound that follows from J(y)~>ln(1 + y), 

Lo<~elF(--bl 1) (42) 

and may be computed from tables of the incomplete gamma function. 
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4. GROUND-STATE ENERGY 

Let us now turn to the results for the ground-state  energy, given as the 
solution of  

e = (B/2) 2 I(ble) (43) 

If we calculate only to order B 2, we can set ~ = 0 on the r ight-hand side in 
the entire region c~ > 1/2. Then 

= ( B'] 2 2c~ 
e \-~j ~ L o ( b  ) (44) 

This approaches 

. . . /  (45) 

when 2~ ~> 1. The last term arises from quan tum fluctuation corrections to 
the classical theory. As c~ approaches 1/2 from above 

e ~ 2~ - 1 (46) 

Of  course this no longer holds near c~ = 1/2 when e is large. Fract ional  and 
logari thmic terms only enter in higher order and there is nothing special 
about  the region e ~ 1. 

In the region c~ < 1/2 we need to retain the fractional ~b term and the 
constant  term in I(ble). Then 

e=(2)2 [C(b)eb b + l  +----~ Lo(b) 1 (47) 

Since b < 0, the fractional term dominates  and 

e ~ {(B/Z) 2 C} '/2(1-~) (48) 

At b = 0 (e = 1/2) we use Eq. (34). e is obtained as the solution of 

e* = (B/2) 2 e -~ In l/e* (49) 

e* involves an infinite series of logari thms of  B. Then one uses Eq. (35), 
linear in b, to find e in the vicinity of  b = 0. The width of  the crossover 
region is of order b ~ I / In( I /e*)  and goes slowly to zero as b --, 0. 

In the present theory, accurate to order  B 2, the transit ion from the 
weak coupling to classical theory is smooth.  It occurs near c~ = 1/2. All of 
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this is compatible with the variational calculation of / .  On the other hand, 
the present analysis is superior for e>> 1, since it includes quantum fluc- 
tuations. The variational calculation gives an infinite-order transition at 
c~ = �89 + (1 + B2) ~/~ ] for B < e/(e ~ -  1/4). The modified source theory gives 
the same type of transition at c~ = 1 for B < i/e. The present analysis gives 
no transition at all. The two results are in agreement when one calculates 
energies to order B 2. The energies in the variational and source calculations 
are of order (Be) ~/(~ ~), i.e., vanishingly small near c~ = 1. 

What really happens for B ~ 1 is not settled by this analysis. The 
variational calculation neglects quantum fluctuations in the higher ~ phase 
and is therefore suspect. In the next section I attack the B <  1 region 
starting from a Hamiltonian that has been prepared to include the modified 
source theory in the unperturbed Hamiltonian. I show that there is in fact 
no transition at all near a = 1 when B ,~ 1. 

5. A P P L I C A T I O N  TO S O U R C E  T H E O R Y  

One can apply the Brillouin-Wigner variational treatment to a 
Hamiltonian that is first prepared by making a source-type canonical 
transformation. The value of this procedure as a starting point for a 
systematic analysis was emphasized by Emery and Luther, ~3) who noted 
that the - ( B Z / 2 ) a ~  term removes the degeneracy at B = 0. 

Let us introduce 

U~=exp (i l pf dk ax ) (50) 

f(k) = l ( f ~  1 / 2 2  \ n J  ~ D  k +1/3' In 1 = ~(/3) (51) 

We leave/3 free and arrange the Hamiltonian as 

c~ 1 BZ 
UsHUsl-  2 1 + / 3  2 az+Vl+V2+H~ (52) 

B -- Z )  -- ay ( 2  sin f f p d k - f l f p f d k )  V1 = - ~ - a z  (cos  2 f pdk 2 

V2 =/3 f f(ayP - g~q) dk (53) 

Note the consequences of this arrangement. First, V2 vanishes when 
applied to the new unperturbed state vector (1) ~0, so that it does not enter 
in the BW calculation. Second, in the normal phase (/3 r 0) the az part of 
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V1 starts a s  ~2.  The contribution from the off-diagonal ay part is ~ 3 .  So 
we will obtain results that are valid to order ~2 for all B. Third, if/3 is 
chosen to have the modified source value/3 = BZ, V1 has an overall factor 
B. The treatment is thus again suited to a study of the B ~ 1 limit. 

Finally, if/3 = BZ, the starting point is the full phase diagram of the 
modified source theory. The BW treatment allows us to incorporate quan- 
tum fluctuations and the crossover to classical theory for 1/2 < ~ < 1 when 
B < I .  

There is an advantage in leaving fl free and determining it later by the 
variational principle. Introduce 

1 BZ  
81 = - E  (54) 

2~+/~ 2 

t l (y)= f f2e-yk  dk (55) 

Using our earlier procedure 

el >~ e Y'~ dy ZZ(cosh 2r / -  1) 

+ j o e l  ~176 ~(e~ Bz) sinh2t/_/3BZtl + (56) 

In the large-c~ region with /3--0 this is the theory of the previous section. 
However, we can now ask whether it is possible to improve the result by 
taking/3 r 0 in this region. This is indeed the case. 

When /3~ 1 we expand t/(y). There is a term in /31n/3. Then the 
equation determining el simplifies to 

8 1 = (B/2) 2 I(b182) (57) 

with 

1 
e 2 = /31  - -  4/3 In ~.  ~ (58) 

P 

We determine/3 by examining the energy expression 

~/3 (Be)  ~ 
IEI - 2 2 ~- ~ + el (59) 

since Z ~ (fie) ~. In the region ~ > 1 

(f;{ , ,60, el ~ Ko(b) + 4~Kl(b)/~ In 1 + (B/2) z k 1 

822/54/1-2-29 
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It is now possible to choose/7 ~ 1 but :~ 0. The/7 In/7 term dominates the 
3 ~ term of the source theory and we find (B ~ 1) 

I 1 -~ exp - 
fie = exp 2B2/s --B-T// 

The energy of the/7 = 0 theory is lowered by the very small term 

(61) 

( B 2 1 exp - (62) 
) 

On the other hand, in the region e < 1, E 1 is again shifted by a term propor-  
tional to/7 ln(1//~). But this is small compared to the source term 3 ~. So/7 is 
determined for e < 1 by the theory of Sections 2-4~ In the close vicinity of 

= 1 there is a smooth change in /7 determined by the confluence of the 
two types of terms. 

The result of this section is that the combination of the source trans- 
form with an inverse length/7 and the BW variational approach offers great 
advantages. Not  only do we correct the source theory to cover the 
crossover to classical behavior plus quantum fluctuations near c~ = 1/2, as 
was the case for t he /7 - -0  theory. We also obtain a better calculation of the 
energy for larger values of B in the normal regime. This is already achieved 
with/7 = BZ.  

By leaving /7 free for variation, we wipe out the soft transition of the 
source theory near c~-- 1 and lower the energy further. Of  course the full 
analysis of Eq. (56) is very complicated. We have no definite conclusions 
about the transition when B ~ 1/e. The results of Part  II show that there is 
a first-order transition that develops at some point when B is increased. 
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